LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER - APRIL 2023

PST 2602 – MODERN PROBABILITY THEORY

 Date: 06-05-2023
 Dept. No.
 Max. : 100 Marks

 Time: 01:00 PM - 04:00 PM

Section A

Answer ALL questions

- 1. Define decomposition of distribution functions.
- 2. Define probability measure.
- 3. How do you find limit of an increasing sequence of sets?
- 4. Define stability of independent random variables.
- 5. Define mixture of distribution functions.
- 6. State the properties of moment generating functions.
- 7. Define equivalent random variables.
- 8. Define bivariate characteristic function..
- 9. Define convergence in probability.
- 10. State Kolmogorov's strong law of large numbers.

Section **B**

Answer ANY FIVE questions

- 11. State and prove the continuity property of probability.
- 12. State and prove the necessary and sufficient condition for n random variables to be independent.
- 13. Define convergence in probability and state and prove the criterion for convergence in probability
- 14. State and prove Jensens inquality.
- 15. Show that convergence in probability implies convergence in distribution.

16. Let $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$. Then prove that,

(a)
$$a X_n \xrightarrow{P} a X$$

(b)
$$X_n + Y_n \xrightarrow{P} X + Y$$

(c)
$$X_n Y_n \xrightarrow{P} X Y$$

(d)
$$\frac{X_n}{Y_n} \xrightarrow{P} \frac{X}{Y}$$

17. State and prove Kolmogorov's strong law of large numbers.

18. State and prove the conditions under which WLLN holds.

(5 X 8 = 40)

(10 X 2 = 20)

Section C

Answer ANY TWO questions.

19. State and prove the necessary and sufficient condition for a function F to be the distribution function of

a

random variable.

20. Define the characteristic function of a random variable and State the inversion

theorem for discrete and continuous case and find

(a) Characteristic function $\boldsymbol{\phi}\left(\boldsymbol{u}\right)$ of normal distribution

(b) The distribution if $\varphi(u) = e^{-|t|}$, $-\infty < t < \infty$

(10 + 10)

(2 X 20 = 40)

21. State and prove Markov's theorem.

22. State and prove the Lindeberg-Levi central limit theorem clearly explaining the assumptions.

&&&&&&&&&&&&